
For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Lambda-Related
Methods Directly in

Lists and Maps
Originals of slides and source code for examples: http://courses.coreservlets.com/Course-Materials/java.html

Also see Java 8 tutorial: http://www.coreservlets.com/java-8-tutorial/ and many other Java EE tutorials: http://www.coreservlets.com/
Customized Java training courses (onsite or at public venues): http://courses.coreservlets.com/java-training.html

λ

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

For customized training related to Java or
JavaScript, please email hall@coreservlets.com

Marty is also available for consulting and development support

The instructor is author of several popular Java EE books, two of the
most popular Safari videos on Java and JavaScript, and this tutorial.

Courses available at public venues, or
custom versions can be held on-site at your organization.

• Courses developed and taught by Marty Hall
– JSF 2.3, PrimeFaces, Java programming (using Java 8, for those new to Java), Java 8 (for Java 7 programmers),

JavaScript, jQuery, Angular 2, Ext JS, Spring Framework, Spring MVC, Android, GWT, custom mix of topics.
– Java 9 training coming soon.
– Courses available in any state or country.
– Maryland/DC companies can also choose afternoon/evening courses.

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Hadoop, Spark, Hibernate/JPA, HTML5, RESTful Web Services

Contact hall@coreservlets.com for details

4

Topics in This Section
• List

– forEach (applies to all Iterables)
– removeIf (applies to all Collections)
– replaceAll
– sort

• Map
– forEach
– computeIfAbsent (and compute, computeIfPresent)
– merge
– replaceAll

5

Overview
• Lists and other collections

– Have methods that are shortcuts for very similar Stream methods
– Often modify the existing List, unlike the Stream versions
– With very large Lists, the new methods might have small performance advantages

vs. the similar Stream methods

• Maps
– Have methods that significantly extend their functionality vs. Java 7
– No equivalent Stream methods

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Lists:
Overview of New
Java 8 Methods

7

Summary
• forEach

– Identical to forEach for Streams, but saves you from calling “stream()” first

• removeIf
– Like filter with negation of the Predicate, but removeIf modifies the original List

• replaceAll
– Like map, but replaceAll modifies the original List
– Also, with replaceAll, the Function must map values to the same type as in List

• sort
– Takes Comparator just like stream.sorted and Arrays.sort

8

forEach (Applies to All Iterables)
• Basic syntax

– someList.forEach(someConsumer)
• employeeList.forEach(System.out::println)

• Equivalent Stream code
– someList.stream().forEach(someConsumer)

• employeeList.stream().forEach(System.out::println)

• Advantages
– Slightly shorter code
– Same performance

• Disadvantages
– None

9

removeIf (Applies to All Collections)
• Basic syntax

– someList.removeIf(somePredicate)
• stringList.removeIf(s -> s.contains("q"))

• Equivalent Stream code
– someList = someList.stream().filter(somePredicate.negate())

.collect(Collectors.toList())
• stringList = stringList.stream().filter(s -> !s.contains("q")).collect(Collectors.toList())

– If you want to be sure the new List is same concrete type as old one, then you should do
... collect(Collectors.toCollection(YourListType::new))

• Advantages
– Shorter code if you want to modify the original List
– Possible slight performance gain for very large Lists

• Disadvantages
– Longer code if you want to result to be new List

10

replaceAll
• Basic syntax

– someList.replaceAll(someUnaryOperator)
• stringList.replaceAll(String::toUpperCase)

• Equivalent Stream code
– someList = someList.stream().map(someFunction)

.collect(Collectors.toList())
• stringList = stringList.stream().map(String::toUpperCase).collect(Collectors.toList())

• Advantages
– Shorter code if you want to modify the original List
– Possible slight performance gain for very large Lists

• Disadvantages
– Longer code if you want to result to be new List
– replaceAll must map to same type as entries in original List, whereas map can

produce streams of totally different types

11

sort
• Idea

– someList.sort(someComparator)
• employeeList.sort(Comparator.comparing(Employee::getLastName))

• Equivalent Stream method
– someList = someList.stream().sorted(someComparator)

.collect(Collectors.toList())
• stringList =

stringList.stream().sorted(Comparator.comparing(Employee::getLastName))
.collect(Collectors.toList())

• Advantages
– Shorter code if you want to modify the original List
– Large performance gain for very large LinkedLists (not for ArrayLists)

• Disadvantages
– Longer code if you want to result to be new List

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Lists:
Performance
Comparisons

13

Overview
• Questions

– Because removeIf, replaceAll, and sort modify the original List, will they be faster
than streaming the List and accumulating the result into a new List?

• Preview of answers
– removeIf: no
– replaceAll: possibly yes for LinkedList, no for ArrayList
– sort: possibly yes for LinkedList, no for ArrayList

• Caution
– Results did not show clear trends; they should be viewed skeptically

• Results may depend on memory usage and details of current Java release

– What is clear is that for sizes below about a million entries, there was no measurable
performance difference, at least with the current Java release

• Conclusion: use the List methods for convenience (because they modify existing List),
not for performance reasons

14

Shared Code for Examples
public class PerformanceTests {
private static LinkedList<Integer> list1;
private static ArrayList<Integer> list2;
private static LinkedList<Integer> list3;
private static ArrayList<Integer> list4;
private static String message =
"%s entries in %s with %,d elements.%n";

15

Shared Code for Examples Continued
private static void initializeLists(int size) {

list1 = new LinkedList<>();
fillList(list1, size);
list2 = new ArrayList<>(size);
fillList(list2, size);
list3 = new LinkedList<>();
fillList(list3, size);
list4 = new ArrayList<>();
fillList(list4, size);

}

private static void fillList(List<Integer> nums, int size) {
for(int i=0; i<size; i++) {

nums.add(i);
}

}

16

removeIf: Code
private static void profileRemoveIf() {

int size = 1_000_000;

for(int i=0; i<4; i++) {

initializeLists(size);

Predicate<Integer> isEven = n -> n%2 == 0;

Predicate<Integer> isOdd = n -> n%2 != 0;

System.out.printf(message, "Removing even", "LinkedList", size);

Op.timeOp(() -> list1.removeIf(isEven));

System.out.printf(message, "Removing even", "ArrayList", size);

Op.timeOp(() -> list2.removeIf(isEven));

System.out.printf(message, "Streaming and filtering even", "LinkedList", size);

Op.timeOp(() -> list3 = list3.stream().filter(isOdd)

.collect(Collectors.toCollection(LinkedList::new)));

System.out.printf(message, "Streaming and filtering even", "ArrayList", size);

Op.timeOp(() -> list4 = list4.stream().filter(isOdd)

.collect(Collectors.toCollection(ArrayList::new)));

size = size * 2;

System.out.println();

}

}

17

removeIf: Representative Results
Removing even entries in LinkedList with 1,000,000 elements.

Elapsed time: 0.023 seconds.

Removing even entries in ArrayList with 1,000,000 elements.

Elapsed time: 0.027 seconds.

Streaming and filtering even entries in LinkedList with 1,000,000 elements.

Elapsed time: 0.024 seconds.

Streaming and filtering even entries in ArrayList with 1,000,000 elements.

Elapsed time: 0.017 seconds.

... (Similar for 2,000,000 and 4,000,000)

Removing even entries in LinkedList with 8,000,000 elements.

Elapsed time: 0.067 seconds.

Removing even entries in ArrayList with 8,000,000 elements.

Elapsed time: 0.053 seconds.

Streaming and filtering even entries in LinkedList with 8,000,000 elements.

Elapsed time: 0.065 seconds.

Streaming and filtering even entries in ArrayList with 8,000,000 elements.

Elapsed time: 0.064 seconds.

No consistent measurable difference for either List type
on any sized List.

18

replaceAll: Code
private static void profileReplaceAll() {

int size = 1_000_000;

for(int i=0; i<4; i++) {

initializeLists(size);

UnaryOperator<Integer> doubleIt = n -> n*2;

System.out.printf(message, "Doubling", "LinkedList", size);

Op.timeOp(() -> list1.replaceAll(doubleIt));

System.out.printf(message, "Doubling", "ArrayList", size);

Op.timeOp(() -> list2.replaceAll(doubleIt));

System.out.printf(message, "Streaming and doubling", "LinkedList", size);

Op.timeOp(() -> list3 = list3.stream().map(doubleIt)

.collect(Collectors.toCollection(LinkedList::new)));

System.out.printf(message, "Streaming and doubling", "ArrayList", size);

Op.timeOp(() -> list4 = list4.stream().map(doubleIt)

.collect(Collectors.toCollection(ArrayList::new)));

size = size * 2;

System.out.println();

}

}

19

replaceAll: Representative Results
Doubling entries in LinkedList with 1,000,000 elements.

Elapsed time: 0.484 seconds.

Doubling entries in ArrayList with 1,000,000 elements.

Elapsed time: 0.013 seconds.

Streaming and doubling entries in LinkedList with 1,000,000 elements.

Elapsed time: 0.173 seconds.

Streaming and doubling entries in ArrayList with 1,000,000 elements.

Elapsed time: 0.026 seconds.

... (Similar for 2,000,000 and 4,000,000)

Doubling entries in LinkedList with 8,000,000 elements.

Elapsed time: 0.072 seconds.

Doubling entries in ArrayList with 8,000,000 elements.

Elapsed time: 0.554 seconds.

Streaming and doubling entries in LinkedList with 8,000,000 elements.

Elapsed time: 7.746 seconds.

Streaming and doubling entries in ArrayList with 8,000,000 elements.

Elapsed time: 1.739 seconds.

Results were highly variable, but average results seemed
worse for streaming case with LinkedList when List sizes
were very large. No measurable difference for when List sizes
were 2 million or less. Might depend on specific Java release.

20

sort: Code
private static void profileSort() {

int size = 1_000_000;

for(int i=0; i<4; i++) {

initializeLists(size);

Comparator<Integer> evensFirst = (i1, i2) -> (i1 % 2) - (i2 % 2);

System.out.printf(message, "Sorting", "LinkedList", size);

Op.timeOp(() -> list1.sort(evensFirst));

System.out.printf(message, "Sorting", "ArrayList", size);

Op.timeOp(() -> list2.sort(evensFirst));

System.out.printf(message, "Streaming and sorting", "LinkedList", size);

Op.timeOp(() -> list3 = list3.stream().sorted(evensFirst)

.collect(Collectors.toCollection(LinkedList::new)));

System.out.printf(message, "Streaming and sorting", "ArrayList", size);

Op.timeOp(() -> list4 = list4.stream().sorted(evensFirst)

.collect(Collectors.toCollection(ArrayList::new)));

size = size * 2;

System.out.println();

}

}

21

sort: Representative Results
Sorting entries in LinkedList with 1,000,000 elements.

Elapsed time: 0.117 seconds.

Sorting entries in ArrayList with 1,000,000 elements.

Elapsed time: 0.037 seconds.

Streaming and sorting entries in LinkedList with 1,000,000 elements.

Elapsed time: 0.064 seconds.

Streaming and sorting entries in ArrayList with 1,000,000 elements.

Elapsed time: 0.058 seconds.

... (2,000,000 and 4,000,000 showed slightly worse for streaming with LinkedList)

Sorting entries in LinkedList with 8,000,000 elements.

Elapsed time: 0.410 seconds.

Sorting entries in ArrayList with 8,000,000 elements.

Elapsed time: 0.283 seconds.

Streaming and sorting entries in LinkedList with 8,000,000 elements.

Elapsed time: 8.637 seconds.

Streaming and sorting entries in ArrayList with 8,000,000 elements.

Elapsed time: 0.610 seconds.

Results were highly variable, but average results seemed
worse for streaming case with LinkedList when List sizes
were very large.

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Maps: Overview
of New Java 8

Methods

23

Summary
• forEach(function)

– Similar to forEach for Stream and List, except function takes two arguments: the
key and the value

• replaceAll(function)
– For each Map entry, passes the key and the value to the function, takes the output,

and replaces the old value with it
• Similar to replaceAll for List, except function takes two arguments: key and value

• merge(key, initialValue, function)
– If no value is found for the key, store the initial value
– Otherwise pass old value and initial value to the function, and overwrite current

result with that output

• computeIfAbsent(key, function)
– If value is found for the key, return it
– Otherwise pass the key to the function, store the output in Map, and return it

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

forEach and
replaceAll

25

forEach and replaceAll
• forEach(function): idea

– For each Map entry, passes the key and the value to the function

• Mini example
map.forEach((key, value) ->

System.out.printf("(%s,%s)%n", key, value));

• replaceAll(function): idea
– For each Map entry, passes the key and the value to the function, then replaces

existing value with that output

• Mini example
shapeAreas.replaceAll((shape, area) -> Math.abs(area));

26

Map Printing Utility
public class MapUtils {

public static <K,V> void printMapEntries(Map<K,V> map) {

map.forEach((key, value) -> System.out.printf("(%s,%s)%n", key, value));

}

}

27

Example Usage
public class NumberMap {
private static Map<Integer,String> numberMap = new HashMap<>();

static {
numberMap.put(1, "uno");
numberMap.put(2, "dos");
numberMap.put(3, "tres");

}

public static void main(String[] args) {
MapUtils.printMapEntries(numberMap);
numberMap.replaceAll((number, word) -> word.toUpperCase());
MapUtils.printMapEntries(numberMap);

}
}

(1,uno)
(2,dos)
(3,tres)
(1,UNO)
(2,DOS)
(3,TRES)

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

merge

29

merge(key, initialValue, function)
• Idea

– Lets you update existing values
• If no value is found for the key, store the initial value
• Otherwise pass old value and initial value to the function, and overwrite current result

with that updated result

• Mini example (creates message or adds it on end of old one)
messages.merge(key, message, (old, initial) -> old + initial);

– Or, equivalently
messages.merge(key, message, String::concat);

30

merge: Example Usage
• Idea

– Given an array of ints, produce Map that has counts of how many times each entry
appeared

– For example, if you have a very large array of grades on exams (all from 0-100),
you can use this to sort them in O(N), instead of a comparison-based sort that is
O(N log(N)).

• Code snippet
Map<Integer,Integer> counts = new HashMap<>();
for(int num: nums) {
counts.merge(num, 1, (old, initial) -> old + 1);

}

31

Full Code and Results
public class CountEntries {
public static void main(String[] args) {
int[] nums = { 1, 2, 3, 3, 3, 3, 4, 2, 2, 1 };
MapUtils.printMapEntries(countEntries(nums));

}

public static Map<Integer,Integer> countEntries(int[] nums) {
Map<Integer,Integer> counts = new HashMap<>();
for(int num: nums) {
counts.merge(num, 1, (old, initial) -> old + 1);

}
return(counts);

}
}

(1,2)
(2,3)
(3,4)
(4,1)

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

computeIfAbsent

33

computeIfAbsent(key, function)
• Idea

– Lets you remember previous computations
• If value is found for the key, return it
• Otherwise pass the key to the function, store the output in Map, and return it

– If this technique is applied to entire result of a method call, it is known as
memoization (like memorization without the “r”). Memoization applied to recursive
functions that have overlapping subproblems results in automatic dynamic
programming and can provide huge performance gains.

• General format for 1-argument methods
– First, make a Map that maps argument types to return types. Then:

public static ReturnType memoizedMethod(arg) {
return(map.computeIfAbsent(arg, val -> codeForOriginalMethod(val));

}

34

Simple Example: Prime Numbers
• Idea

– Use my Primes utility class to find primes of a given size. Once you find an n-digit
prime, remember it and return it next time that you are asked for one of that size.

• Original version
public static BigInteger findPrime1(int numDigits) {

return(Primes.findPrime(numDigits));
}

– Finding large (e.g., 200-digit) primes is expensive, so if you do not need new results
each time, this is wasteful.

• Memoized version (after making Map<Integer,BigInteger>)
public static BigInteger findPrime(int numDigits) {

return(primes.computeIfAbsent(numDigits, n -> Primes.findPrime(n)));
}

– First time you ask for prime of size n: calculates it. Second time: returns old result.

35

Full Code for Memoized Version
public class PrimeMap {

private static Map<Integer,BigInteger> primes = new HashMap<>();

public static void main(String[] args) {

List<Integer> lengths = Arrays.asList(2, 10, 20, 100, 200);

System.out.println("First pass");

lengths.forEach(size ->

System.out.printf(" %3s-digit prime: %s.%n", size, findPrime(size)));

System.out.println("Second pass");

lengths.forEach(size ->

System.out.printf(" %3s-digit prime: %s.%n", size, findPrime(size)));

}

public static BigInteger findPrime(int numDigits) {

return(primes.computeIfAbsent(numDigits, n -> Primes.findPrime(n)));

}

}

36

Results
First pass

2-digit prime: 37.
10-digit prime: 9865938581.
20-digit prime: 81266731015996542377.
100-digit prime: 1303427...3109.
200-digit prime: 8579052...2809.

Second pass
2-digit prime: 37.

10-digit prime: 9865938581.

20-digit prime: 81266731015996542377.
100-digit prime: 1303427...3109.
200-digit prime: 8579052...2809.

On first pass, it took significant time to find the 100-digit and 200-digit
primes. On second pass, results were almost instantaneous since the
previous results were simply returned from the Map.

37

Example 2: Fibonacci Numbers
• Idea

– Make a recursive function to calculate numbers in the sequence 0, 1, 1, 2, 3, 5, 8...
• Fib(0) = 0
• Fib(1) = 1
• Fib(n) = Fib(n-1) + Fib(n-2)

• Problem
– The straightforward recursive version has overlapping subproblems: when

computing Fib(n-1), it computes Fib(n-2), yet it repeats that computation when
finding Fib(n-2) directly. This results in exponential complexity.

• Solutions
– In this case, you can build up from the bottom with an iterative version.

• But, for many other problems, it is hard to find non-recursive solution, and that solution
is far more complex than the iterative one. E.g., recursive-descent parsing, finding
change with fewest coins, longest common substring, many more.

– Better solution: use recursive version, then memoize it with computeIfAbsent

38

Unmemoized Version: O(2n)

public static int fib1(int n) {
if (n <= 1) {
return(n);

} else {
return(fib1(n-1) + fib1(n-2));

}
}

39

Memoized Version: O(n) First Time and O(1) for
Later Calculations

private static Map<Integer,Integer> fibMap = new HashMap<>();

public static int fib(int num) {
return
fibMap.computeIfAbsent(num, n -> {
if (n <= 1) {
return(n);

} else {
return(fib(n-1) + fib(n-2));

}
});

}
An even better version would make the output long or even BigInteger,
since Fibonacci numbers will quickly overflow ints.

40

Test Case
public static void profileFib() {

for(i=0; i<47; i++) {
Op.timeOp(() -> System.out.printf("fib1(%s)= %s.%n", i, fib1(i)));
Op.timeOp(() -> System.out.printf("fib(%s) = %s.%n", i, fib(i)));

}
}

fib1(0)= 0.
Elapsed time: 0.001 seconds.

fib(0) = 0.
Elapsed time: 0.001 seconds.

fib1(1)= 1.
Elapsed time: 0.000 seconds.

fib(1) = 1.
Elapsed time: 0.000 seconds.

...
fib1(44)= 701408733.
Elapsed time: 3.269 seconds.

fib(44) = 701408733.
Elapsed time: 0.000 seconds.

fib1(45)= 1134903170.
Elapsed time: 5.293 seconds.

fib(45) = 1134903170.
Elapsed time: 0.000 seconds.

fib1(46)= 1836311903.
Elapsed time: 8.572 seconds.

fib(46) = 1836311903.
Elapsed time: 0.000 seconds.

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Wrap-Up

42

Summary
• Lists

– forEach
• Identical to forEach for Streams, but saves you from calling “stream()” first

– removeIf
• Like filter with negation of the Predicate, but removeIf modifies the original List

– replaceAll
• Like map, but replaceAll modifies the original List

– sort
• Takes Comparator just like stream.sorted and Arrays.sort, and modifies original List

• Maps
– forEach(function) and replaceAll(function)

• Similar to versions for List, except function takes two arguments: the key and the value

– merge(key, initialValue, function)
• Lets you update old values

– computeIfAbsent(key, function)
• Lets you make memoized functions that remember previous calculations

For additional materials, please see http://www.coreservlets.com/. The Java tutorial section contains
complete source code for all examples in this tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Questions?

More info:
http://courses.coreservlets.com/Course-Materials/java.html – General Java programming tutorial

http://www.coreservlets.com/java-8-tutorial/ – Java 8 tutorial
http://courses.coreservlets.com/java-training.html – Customized Java training courses, at public venues or onsite at your organization

http://coreservlets.com/ – JSF 2, PrimeFaces, Java 7 or 8, Ajax, jQuery, Hadoop, RESTful Web Services, Android, HTML5, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training
Many additional free tutorials at coreservlets.com (JSF, Android, Ajax, Hadoop, and lots more)

