
Customized Java EE training at your location: JSF 2, PrimeFaces, general Java programming, Java 8 lambdas/streams, JavaScript, jQuery, Angular 2, Android, Spring MVC, GWT, REST, etc. 
For sample tutorials and public courses, see http://www.coreservlets.com/. To inquire about onsite courses, email hall@coreservlets.com.

Exercises: 
Object-Oriented Programming: 

Advanced Capabilities

Make a new Eclipse project called oop-advanced-project or similar.

1. Make a CarSale class to represent the sale of a car. The class should represent the car name 
(model), the list price, the discount in percent, and the final cost (calculated from the list price after 
the discount is applied). To keep your code shorter, you can have getter but not setter methods for 
each of those properties. Also put in a useful toString method. Make a few instances and print them 
out.

Note: if you don’t understand @Override, just skip it for now. In the next lecture, we will explain it 
more and see a situation where using it is critical. Also, remember that once you have instance vari-
ables, Eclipse can create the getters, setters (not needed here), and constructor for you. Use the 
Source menu to tell Eclipse to insert this code. 

2. Make a PaperclipSale class to represent the sale of a set of boxes of certain types of paper clips. 
The class should represent the color of the clips, the per-box price, the number of those boxes being 
sold, and the final cost. Also put in a useful toString method. Make a few instances and print them 
out.

3. Make a static method called cheapest that, given an array of mixed CarSale and PaperclipSale 
objects, will return the item with the lowest cost. (Return null if given an empty array. Don’t worry 
about the possibility that the array might have two entries with the same cost.) Where is the best 
place to put this method? Test the method.

Question to ponder: why was it important that your classes had meaningful toString methods?

4. Make a static method called totalCost that, given an array of mixed CarSale and PaperclipSale 
objects, will return the total cost of all elements in the array. (Return 0 if given an empty array.) Test 
the method.

5. Make a Coin enum with instances named HEADS and TAILS.

6. Make a static flip method that returns Coin.HEADS and Coin.TAILS with equal probability. Where 
is the best place to put this method? Make a test case where you call flip multiple times and print 
out the result each time.


