
Customized Onsite Training: Java 7 & 8, JSF 2, PrimeFaces, Servlets/JSP, Ajax/jQuery, Android, Spring, Hibernate, Hadoop, GWT, REST, etc: http://courses.coreservlets.com/

Swing and MVC

To simplify these problems, I have made a class in my swing-mvc-exercises project called JList-
Base. By using JListBase, all you have to do is to create a JList, and the code will automatically
create and pop up a window containing your JList. Copy JListBase and WindowUtilities to your
new project as a starting point. Make a subclass of JListBase and implement these methods:

• makeJList. Have this return the JList you want. This is the only method you need to over-
ride for problems 1, 2, 4, and 5. Note that the base code takes this return value and puts it
into a protected instance variable call jList. If you are rusty with generics, just use
unchecked types (JList, not JList<String>, JListBase, not JListBase<String>) and ignore
warnings about using raw types.

• addStufftoListPanel. Have this call “add” on the JPanel argument, if you want to add
something extra to the top window. For problem 3, you will use this method to make a JBut-
ton, attach a listener, and then call listPanel.add(yourNewJButton). But if all you want is a
JList and nothing else, ignore this method totally.

Once you have done this, just make a “main” method that instantiates your class. For example,
here is a simple program that pops up a window that contains a list showing some names.

public class JListTest extends JListBase<String> {
 @Override
 protected JList makeJList() {

// In your code, you have to write this part to create a JList
String[] names = { ”Joe”, ”Jane”, ”John”, ”Juan”, ”Jean” };
JList<String> nameList = new JList<>(names);
return(nameList);

 }

 public static void main(String[] args) { new JListTest(); }
}

1. Make an Employee class with a first name, last name, and salary. Make an array of Employee
objects. Make a JList that shows the names: Specifically, make an array of Strings by looping
down the Employees and looking up the name, then display those Strings in a JList.

2. Repeat the previous problem, but this time don’t make an array of Strings first. (Hint: give
your class a toString method and note that you can pass an Object[] (e.g., the Employee[]) to
the JList constructor.)

3. Add a push button that, when pressed, pops up a dialog box showing the salary of the cur-
rently selected name. Hint1: call listBox.getSelectedValue() and cast the result to Employee.
Hint2: assuming “this” refers to the subclass of JListBase, pop up a dialog box with JOption-
Pane.showMessageDialog(this, someMessage).

4. Make a List<Employee>. Implement the ListModel interface in order to put the employees
into a JList. (Hint: as in the class example, you can have empty bodies for addListDataListe-
ner and removeListDataListener).

